Impurities management in an Oxy-Combustion Power Plant Jean-Pierre TRANIER, Nicolas PERRIN 2nd IEA GHG Oxyfuel Combustion Conference, Yeppoon, Australia, 15 September 2011 # Key advantages of oxycombustion: efficiency #### and near zero emissions What is the best way to manage the impurities in order to maximize these advantages i.e. efficiency and zero emissions? ### What are the impurities? - Coming from coal - √ H₂O - ✓ PM - ✓ SOx - ✓ Hg - → HCI, HF - Coming from oxygen - ✓ O2 - ✓ N2 - ✓ Ar - Coming from coal and oxygen - ✓ NOx - \vee N₂O - ✓ CO # What are the locations to manage impurities? - Air Separation Unit (ASU) - Coal handling and preparation - Boiler - Environmental Island - CO₂ Compression and Purification Unit (CO₂ CPU) #### AIR LIQUIDE # Two distinct functions: de-concentration of the recycle loop and emission control ## What are the locations to manage impurities? | | PM | H ₂ O | SOx | NOx | HCI
HF | Hg | N ₂
Ar | O ₂ | СО | |-----------------------------|----------|------------------|-----|-----|-----------|----------|----------------------|----------------|----| | ASU | | | | ✓ | | | ✓ | | | | Coal handling & preparation | ✓ | ✓ | ✓ | | | ✓ | | | | | Boiler | | | ✓ | ✓ | | | | ✓ | ✓ | | Environmental Island | √ | ✓ | ✓ | ✓ | ✓ | √ | | | | | CO ₂ CPU | √ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | √ | ✓ | 2 impurities are key for their impact on LCOE (CAPEX and OPEX): H₂O and SOx #### Air Separation Unit - High purity oxygen (99.5% O₂, 0.5% Ar) can increase specific energy consumption of Air Separation Unit by more than 30% - Therefore low oxygen purity (96.5% O₂, 3% Ar, 0.5% N₂) is the preferred solution including impact on CPU design # Coal handling and preparation - Coal drying (for sub-bituminous and lignite) provides a triple efficiency advantage: - 1. Less water is vaporized in the boiler - + specifically in oxycombustion: - 2. Flow to CPU is reduced and consequently the associated heat loss - 3. Indirect firing considerably reduces the primary flow: - it is not anymore necessary to condensate water from this significant amount of flue gas in order to avoid condensation in the pulverizers - possible additional efficiency of more than 1 percentage point HHV - Coal preparation could also have an impact on sulfur, PM and Hg #### Boiler #### SOx: - ✓ In oxycombustion, it may be necessary to deconcentrate the recycle loop as soon as the coal suphur content is above approximately 1% - ✓ It is preferable not to introduce H₂O for desulphurization - Therefore, dry desulphurization (e.g. furnace sorbent injection) is likely to be the best solution - O₂: excess O₂ is a key parameter in oxycombustion as it impacts the size and power consumption of the ASU and of the CPU - NOx : NO₂ purge from CPU could be reburnt in the boiler for NOx reduction #### Environmental island - Particulate Matter needs to be removed on the overall flue gas to deconcentrate the recycle loop; high temperature solutions (350°C versus 150°C) needs to be developed to improve HHV efficiency; otherwise, recycle flue gas has to be cooled down and reheated - H₂O: if indirect firing is chosen, flue gas condensation together with HF/HCl removal will be part of CO₂ CPU - SOx: SDA and wet FGD penalize the efficiency of the plant; dry desulfurization options could also be considered - NOx: SCR is not required as CO₂ CPU efficiently removes NOx at a low cost - Hg: CO₂ CPU will manage Hg more efficiently #### CO₂ CPU - PM: in order to avoid fouling management, a high efficiency filtration system should be considered as an option - H₂O: flue gas condensation and adsorption (at low or high pressure) are the solutions - SOx: several options could be considered such as SO₂ cosequestration, H₂SO4 or liquid SO₂ production - NOx can be purged as NO₂ and reburnt in the boiler - HF/HCI : removed in the flue gas condenser - Hg: guard bed or Hg tolerant components - CO: catalytic oxydation is an option ### What are the **best** locations to manage impurities? | | PM | H ₂ O | SOx | NOx | HCI
HF | Hg | N ₂
Ar | O ₂ | СО | |-----------------------------|------------|------------------|------------|------------|------------|----------|----------------------|----------------|-------------------| | ASU | | | | ✓ | | | ✓ | | | | Coal handling & preparation | √ | \bigcirc | ✓ | | | √ | | | | | Boiler | | | \bigcirc | \bigcirc | | | | \bigcirc | \bigcirc | | Environmental
Island | \bigcirc | ✓ | ✓ | ✓ | √ | ✓ | | | | | CO ₂ CPU | | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | \bigcirc | \(\lambda | - Environmental island functions could be significantly reduced - CO₂ CPU becomes the main emission control equipment ### Oxycombustion power plant of the future #### THANK YOU FOR YOUR ATTENTION #### **Contact** jean-pierre.tranier@airliquide.com